Processing math: 5%

Đề thi HSG lớp 11 tỉnh Lạng Sơn năm học 2013 - 2014

Thứ Ba, 18 tháng 3, 2014


Câu 1 (4 điểm)
Giải hệ phương trình:
\left\{\begin{matrix}x^2+y^2=1-\frac{2xy}{x+y}\\ \sqrt{x+y}+y=x^2\end{matrix}\right.
Câu 2 (4 điểm)
 Giải phương trình
1 + \sin\frac{x}{2}\sin{x} - \cos\frac{x}{2}\sin^2x=2\cos^2\left( \frac{\pi}{4} - \frac{x}{2} \right)
Câu 3 (4 điểm)
Cho dãy số (x_n) xác định bởi:
\left\{\begin{matrix}x_1&=&1\\ x_{n+1}&=&x_n(1+x_n^{2014}), \forall n \in \mathbb{N}\end{matrix}\right.
Tìm \lim \left( \frac{x_1^{2014}}{x_2}+\frac{x_2^{2014}}{x_3}+...+ \frac{x_n^{2014}}{x_{n+1}}\right)
Câu 4 (4 điểm)
Cho hình lăng trụ ABC.A'B'C'. Gọi G,G' lần lượt là trọng tâm các tam giác ABCA'B'C'. Chứng minh rằng các mặt phẳng (ABC'),(BCA')(CAB') có một điểm chung O trên đoạn GG'. Tính \frac{OG}{OG'}.

Câu 5 (4 điểm)
Cho a,b,c là các số thực dương. Chứng minh rằng:
\frac{a^5}{a^4+b^4} +\frac{b^5}{b^4+c^4}+\frac{c^5}{c^4+a^4}  + \frac{1}{2} \left(\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c} \right) \geq a+b+c
--- Hết ---

0 comments:

Đăng nhận xét

 
Copyright © 2012 Hoàng Ngọc Thế. All rights reserved. Ghi rõ nguồn Hoàng Ngọc Thế khi phát hành lại thông tin trên trang này.