Đề thi TSĐH môn toán khối B năm 2014

Chủ Nhật, 13 tháng 7, 2014

Câu 1: (2,0 điểm) Cho hàm số $y = {x^3} - 3mx + 1$ (1), với $m$ là tham số thực.
a. Khảo sát sự biến thiên và vẽ đồ thị của hàm số $(1)$ khi $m=1$.
b. Cho điểm $A(2;3)$. Tìm $m$ để đồ thị hàm số $(1)$ có hai điẻm cực trị $B$ và $C$ sao cho tam giác $ABC$ cân tại $A$.

Câu 2: (1,0 điểm) Giải phương trình $\sqrt 2 \left( {\sin x - 2\cos x} \right) = 2 - \sin 2x$.

Câu 3: (1,0 điểm) Tính tích phân $\int\limits_1^2 {\frac{{{x^2} + 3x + 1}}{{{x^2} + x}}dx} $

Câu 4: (1,0 điểm)
a. Cho số phức $z$ thỏa mã điều kiện $2z + 3\left( {1 - i} \right)\overline z  = 1 - 9i$. Tính môđun của $z$.

b. Để kiểm tra chất lượng sản phân từ một công ty sữa, người ta phải gửi đến bộ phận kiểm j nghiệm 5 hộp sữa cam, 4 hộp sữa dâu và 3 hộp sữa nho. Bộ phận kiểm nghiệm chọn ngẫu nhiên 3 hộp sữa để phân tích nẫu. Tính xác suất để 3 hộp sữa được chọn có cả 3 loại.

Câu 5: (1,0 điểm) Trong không gian với hệ tọa độ $Oxyz$, cho điểm $A(1;0;-1)$ và đường thẳng
$$d:\frac{{x - 1}}{2} = \frac{{y + 1}}{2} = \frac{z}{{ - 1}}$$
Viết phương trình mặt phẳng qua $A$ và vuông góc với $d$. Tìm tọa độ hình chiếu vuông góc của $A$ trên $d$.

Câu 6: (1,0 điểm) Cho lăng trụ $ABC.A'B'C'$ có đấy là tam giác đều cạnh $a$. Hình chiếu vuông góc của $A'$ trên mặt phẳng $(ABC)$ là trung điểm của cạnh $AB$, góc giữa đường thẳng $A'C$ và mặt đáy bằng $60^\circ $. Tính theo $a$ thể tích của khối lăng trụ $ABC.A'B'C'$ và khoảng cách từ điểm $B$ đến mặt phẳng $(ACC'A')$.

Câu 7: (1,0 điểm) Trong mặt phẳng với hệ tọa độ $Oxy$, cho hình bình hành $ABCD$. ĐIểm $M(-3;0)$ là trung điểm của cạnh $AB$, điểm $H(0;-1)$ là hình chiếu vuông góc của $B$ trên $AD$ và điểm $G\left( {\frac{4}{3};3} \right)$ là trọng tâm tam gáic $BCD$. Tìm tọa độ các điểm $B$ và $D$

Câu 8: (1,0 điểm) Giải hệ phương trình 
$$\left\{\begin{matrix} \left( {1 - y} \right)\sqrt {x - y} + x = 2 + \left( {x - y - 1} \right)\sqrt y \\ 2{y^2} -3x+6y + 1=2\sqrt {x - 2y} - \sqrt {4x - 5y - 3} \end{matrix}\right.\left( {x,y \in \mathbb{R}} \right)$$

Câu 9: (1,0 điểm) Cho các số thực $a,b,c$ không âm thỏa mã điều kiện $(a+b)c>0$. Tìm giá trị nhỏ nhất của biểu thức
$$P = \sqrt {\frac{a}{{b + c}}}  + \sqrt {\frac{b}{{a + c}}}  + \frac{c}{{2\left( {a + b} \right)}}$$
$$\text{---Hết---}$$
 Mời bạn thảo luận tại đây

0 comments:

Đăng nhận xét

 
Copyright © 2012 Hoàng Ngọc Thế. All rights reserved. Ghi rõ nguồn Hoàng Ngọc Thế khi phát hành lại thông tin trên trang này.