Câu 1 (6 điểm). Giải các phương trình và hệ phương trình sau:
a) $\sqrt{x^2-3x+2} + \sqrt{x+3} = \sqrt{x-2} + \sqrt{x^2+2x-3}$
b) $2\cos^3x + \cos 2x + \sin x = 0$
c) $\begin{cases} 2x^2 - 8xy^2 - xy + 4y^3 = 0 \\ 16x^3 + 2x - 8y^2 + 5 = 0 \end{cases}$
Câu 2 (4 điểm). Cho dãy số $(x_n)$ được xác định như sau:
$$\begin{cases} x_1 = 2014 \\ x_n = \frac{1}{2} \left( x_{n-1} + \frac{2015}{x_{n-1}} \right), \forall n \geq 2\end{cases}$$
Chứng minh rằng dãy số $(u_n)$ có giới hạn hữu hạn và tìm giới hạn đó.
Câu 3 (3 điểm). Cho tập hợp $A = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$. Có bao nhiêu tập con $X$ của $A$ thỏa mãn điều kiện $X$ chứa $1$ và không chứa $2$.
Câu 4 (4 điểm). Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều, $I$ là trung điểm của $BC, SA$ vuông góc với $(ABC)$ . Gọi $H,O$ lần lượt là trực tâm của $\Delta SBC, \Delta ABC$, $K$ là giao điểm của hai đường thẳng $SA$ và $OH$. Chứng minh rằng:
a) $OH$ vuông góc với $(SBC)$
a) $SO$ vuông góc với $IK$.
Câu 5 (3 điểm). Cho $a,b,c$ là ba số thực dương thỏa mãn $abc=1$. Chứng minh rằng:
$$P=\frac{1}{a^3(b+c)}+\frac{1}{b^3(a+b)}+\frac{1}{c^3(b+c)} \geq \frac{3}{2}$$
$$\text{---Hết---}$$
Download pdf
Tham gia giải tại đây
0 comments:
Đăng nhận xét